我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

载去铁敏的3D打印支架修复兔桡骨临界尺寸骨缺损实验研究

《创伤外科杂志》[ISSN:/CN:]

期数:
2020年12期
页码:
919-922+935
栏目:
论著·基础研究
出版日期:
2020-12-20

文章信息/Info

Title:
Experimental study on a 3D printed scaffold loaded with DFO in repairing critical size bone defect
文章编号:
1009-4237(2020)12-0919-05
作者:
崔 翔李 明刘鐘阳孙国飞刘 真刘建恒
100853 北京,中国人民解放军总医院第一医学中心骨科,国家骨科与运动康复临床医学研究中心(崔翔,李明,刘鐘阳,孙国飞,刘建恒); 100161 北京,中国人民解放军京南医疗区(刘真)
Author(s):
CUI Xiang1LI Ming1LIU Zhong-yang1SUN Guo-fei1LIU Zhen2LIU Jian-heng1
1.Department of Orthopedics,The First Medical Center,Chinese PLA General Hospital,National Clinical Research Center for Orthopedics,Sports Medicine & Rehabilitation,Beijing 100853,China; 2.Beijing Southern Medical District,Chinese PLA,Beijing 100161,China
关键词:
桡骨骨缺损 3D打印支架 去铁敏 修复
分类号:
R 683.41
DOI:
10.3969/j.issn.1009-4237.2020.12.009
文献标识码:
A
摘要:
目的 探讨载去铁敏(DFO)的3D打印支架修复兔桡骨临界尺寸骨缺损的效果。方法 采用3D打印技术制备载DFO的骨修复支架,扫描电镜观测支架表面形貌。体外实验中,细胞增殖实验验证其细胞相容性,qPCR方法验证支架促MC3T3-E1细胞成骨分化性能; 体内实验中,选取成年新西兰大白兔24只,雄性15只,雌性9只,兔龄15~18个月,体重2.5~3.0kg。随机分为空白组(单纯骨缺损)、对照组(空白3D打印支架)、载药组(载DFO的3D打印支架),每组8只。构建兔桡骨临界尺寸骨缺损模型后,分别植入相应支架,于术后即刻和12周时X线观察缺损处愈合情况,并在12周时处死实验兔,对肝肾进行HE染色观察组织相容性。结果 扫描电镜显示对照组、载药组3D打印支架形态均匀。体外实验中,细胞增殖实验显示支架细胞相容性好,载DFO的3D打印支架可促MC3T3-E1细胞成骨分化。体内实验证实,在12周时载药组骨缺损修复效果良好,且组织相容性好。结论 载DFO的3D打印支架具有良好的促临界尺寸骨缺损修复效能,具有潜在的应用前景。

参考文献/References

[1] Schmitz JP,Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions[J]. Clin Orthop Relat Res,1986,(25):299-308.
[2] Schemitsch EH.Size matters: defining critical in bone defect size[J]. J Orthop Trauma,2017,31(S5):S20-22.
[3] Lin B,He Y,Xu Y,et al.Outcome of bone defect reconstruction with clavicle bone cement prosthesis after tumor resection: a case series study[J]. BMC Musculoskelet Disord,2014,15:183.
[4] Priddy LB,Chaudhuri O,Stevens HY,et al.Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects[J]. Acta Biomater,2014,10(10): 4390-4399.
[5] Reichert JC,Epari DR,Wullschleger ME,et al.Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies[J]. Tissue Eng Part B Rev,2010,16(1): 93-104.
[6] Sam G,Vadakkekuttical RJ,Harikumar K,et al. Treatment of a two wall defect in a mandibular posterior tooth with autogenous bone graft obtained during ledge removal with a hand instrument[J]. J Indian Soc Periodontol,2015,19(4): 440-443.
[7] Gerdes S,Mostafavi A,Ramesh S,et al. Process-structure-quality relationships of three-dimensional printed poly(caprolactone)-hydroxyapatite scaffolds[J].Tissue Eng Part A,2020,26(5-6): 279-291.
[8] Bagaria V,Bhansali R,Pawar P. 3D printing-creating a blueprint for the future of orthopedics: current concept review and the road ahead[J].J Clin Orthop Trauma,2018,9(3): 207-212.
[9] Hassanajili S,Karami-Pour A,Oryan A,et al. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2019,104: 109960.
[10] Wang MO,Vorwald CE,Dreher ML,et al. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering[J]. Adv Mater,2015,27(1): 138-144.
[11] Aldemir Dikici B,Reilly GC,Claeyssens F. Boosting the osteogenic and angiogenic performance of multiscale porous polycaprolactone scaffolds by in vitro generated extracellular matrix decoration[J]. ACS Appl Mater Interfaces,2020,12(11): 12510-12524.
[12] Chen H,Jia P,Kang H,et al. Upregulating hif-1alpha by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound[J]. Adv Healthc Mater,2016,5(8): 907-918.
[13] Holden P,Nair LS. Deferoxamine: An angiogenic and antioxidant molecule for tissue regeneration[J]. Tissue Eng Part B Rev,2019,25(6): 461-470.
[14] Jia P,Chen H,Kang H,et al. Deferoxamine released from poly(lactic-co-glycolic acid)promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis[J]. J Biomed Mater Res A,2016,104(10):2515-2527.
[15] Ran Q,Yu Y,Chen W,et al.Deferoxamine loaded titania nanotubes substrates regulate osteogenic and angiogenic differentiation of MSCs via activation of HIF-1alpha signaling[J]. Mater Sci Eng C Mater Biol Appl,2018,91: 44-54.

备注/Memo

备注/Memo:
【基金项目】 国家自然科学基金青年项目(81702153; 81702121); 军队医学科技青年培育计划孵化项目(19QNP052); 军队后勤科研项目重大项目分课题(AWS17J004) 【通信作者】 刘建恒,E-mail:jianhengliu@126.com
更新日期/Last Update: 2020-12-20